جزوه ریاضی عمومی ۲ مبحث انتگرال روی سطح دکتر یوسف زاده عینی
قابل توجه کاربران و دانشجویان عزیز و گرامی: فایلی که هم اکنون معرف حضور شماست اسلایدهای جزوه ریاضی عمومی ۲ مبحث انتگرال روی سطح دکتر یوسف زاده عینی می باشد. این فایل شامل ۳۲ صفحه مطالب بسیار مفید و سودمند می باشد. و در قالب فرمت pdf تهیه شده و هم اکنون آماده دانلود است. امیدواریم که سودمند بوده و مورد استفاده شما سروران گرامی واقع گردد. در صورت تمایل و نیاز می توانید این فایل ارزشمند و مفید را از فروشگاه سایت یوفایل خریداری و دانلود نمایید.
جزوه ریاضی عمومی ۲ مبحث انتگرال روی سطح دکتر یوسف زاده عینی
توجه: توضیح زیر صرفا جهت انجام تنظیمات می باشد.
با داشتن یک سطح، انتگرالگیری میتواند بر روی میدانهای نردهای (توابعی که مقدار آنها یک کمیت نردهای است)
یا برداری آن (توابعی که مقدار آنها یک بردار اقلیدسی است) انجام گیرد.
انتگرالگیری بر روی سطوح، در فیزیک و بهویژه در نظریهٔ کلاسیک الکترومغناطیس کاربرد دارد.
انتگرال سطحی (Surface integral ) در ریاضیات، یک انتگرال معین است که بر روی یک سطح گرفته میشود.
این انتگرال، میتواند بهعنوان نظیر دوگانه انتگرال خطی در نظر گرفته شود. با داشتن یک سطح، انتگرالگیری میتواند
بر روی میدانهای نردهای (توابعی که مقدار آنها یک کمیت نردهای است) یا برداری آن (توابعی که مقدار آنها یک بردار اقلیدسی است) انجام گیرد.
انتگرالگیری بر روی سطوح، در فیزیک و بهویژه در نظریهٔ کلاسیک الکترومغناطیس کاربرد دارد.
برای یافتن یک فرمول صریح برای انتگرال سطحی، باید سطح مورد نظر، S، بر حسب یک دستگاه مختصات خمیده بر روی آن بیان شود
(مانند دستگاه مختصات جغرافیایی روی یک کره). اگر چنین بیانی بهصورت x ( s , t ) فرض شود که ( s , t ) در یک ناحیه T بر روی
صفحه تغییر میکنند، آنگاه انتگرال روی سطح بهصورت زیر نوشته میشود:
که عبارت داخل خطوط عمودی در سمت راست معادلهٔ بالا، اندازه بردار حاصلضرب خارجی مشتقهای پارهای x ( s , t ) بوده و المان سطح نامیده میشود
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.